Preparing WL-LSMS for First Principles Thermodynamics Calculations on Accelerator and Multicore Architectures

Markus Eisenbach

Oak Ridge National Laboratory

Motivation

- Density Functional Calculations have proven to be a useful tool to study the ground state of many materials.
- For finite temperatures the situation is less ideal an one is often forced to rely on model calculation with parameters either fitted to first principles calculations or experimental results.
- Fitting to models is especially unsatisfactory in inhomogeneous systems, nanoparticles or other systems where the model parameters could vary significantly from one site to another.

Solution:

Combine First Principles calculations with statistical mechanics methods

Thermodynamic Observables

 Thermodynamic observables are related to the partition function Z and free energy F

$$Z(\beta) = \sum_{\{\xi_i\}} e^{-\beta H(\{\xi_i\})}$$
$$F(T) = -k_B T \ln Z(1/k_B T)$$

 If we can calculate Z(β) thermodynamic observables can be calculated as logarithmic derivatives.

Wang-Landau Method

- Conventional Monte Carlo methods calculate expectation values by sampling with a weight given by the Bolzmann distribution
- In the Wang-Landau Method we rewrite the partition function in terms of the density of states which is calculated by this algorithm

$$Z(\beta) = \sum_{\{\xi_i\}} e^{-\beta H(\{\xi_i\})} = g_0 \int g(E) e^{-\beta E} dE$$

 To derive an algorithm to estimate g(E) we note that states are randomly generated with a probability proportional to 1/g(E) each energy interval is visited with the same frequency (flat histogram)

Metropolis Method

Metropolis et al, JCP 21, 1087 (1953)

$Z = \int e^{-E[\mathbf{x}]/k_{\rm B}T} d\mathbf{x}$

Compute partition function and other averages with configurations that are weighted with a Boltzmann factor

Sample configuration where Boltzmann factor is large.

1. Select configuration

$$E_i = E[\mathbf{x}_i]$$

2. Modify configuration (move)

$$E_f = E[\mathbf{x}_f]$$

3. Accept move with probability

$$A_{i \to f} = \min\{1, e^{\beta(E_i - E_f)}\}$$

Wand-Landau Method

Wang and Landau, PRL 86, 2050 (2001)

$$Z = \int W(E)e^{-E/k_{\rm B}T}dE$$

If configurations are accepted with probability 1/W all energies are visited equally (flat histogram)

- 1. Begin with prior estimate, eg W'(E) = 1
- 2. Propose move, accepted with probability

$$A_{i\to f} = \min\{1, W'(E_i)/W'(E_f)\}$$

3. If move accepted increase DOS

$$W'(E_f) \to W'(E_f) \times f \quad f > 1$$

- 4. Iterate 2 & 3 until histogram is flat
- 5. Reduce $f \rightarrow f = \sqrt{f}$ and go back to 1

Not quite embarrassingly parallel

Metropolis MC acceptance:

$$A_{i \to f} = \min\{1, e^{\beta(E_i - E_f)}\}\$$

Not quite embarrassingly parallel

Metropolis MC acceptance:

$$A_{i \to f} = \min\{1, e^{\beta(E_i - E_f)}\}$$

Wang-Landau acceptance:

$$A_{i \to f} = \min\{1, e^{\alpha(w_{\alpha}(x_f) - w_{\alpha}(x_i))}\}$$

Not quite embarrassingly parallel

Metropolis MC acceptance:

$$A_{i \to f} = \min\{1, e^{\beta(E_i - E_f)}\}$$

Wang-Landau acceptance:

$$A_{i \to f} = \min\{1, e^{\alpha(w_{\alpha}(x_f) - w_{\alpha}(x_i))}\}$$

local calculation of energy and observable ~ millisecond to minutes

Organization of the WL-LSMS code using a master-slave approach

Nearsightedness and the locally self-consistent multiple scattering (LSMS) method

- Nearsightedness of electronic matter - Prodan & Kohn, PNAS 102, 11635 (2005)
 - Local electronic properties such as density depend on effective potential only at nearby points.
- Locally self-consistent multiple scattering method - Wang et al., PRL 75, 2867 (1995)
 - Solve Kohn-Sham equation on a cluster of a few atomic shells around atom for which density is computed
 - Solve Poisson equation for entire system - long range of bare coulomb interaction

A parallel implementation and scaling of the LSMS method: perfectly scalable at high performance

- •Need only block i of au
- $\bullet \left(\begin{array}{c|c}
 A & B \\
 \hline
 C & D
 \end{array} \right)^{-1} = \left(\begin{array}{c|c}
 (A BD^{-1}C)^{-1} & * \\
 \hline
 * & *
 \end{array} \right)$
- Calculation dominated by ZGEMM
- Sustained performance similar to Linpack

Refactoring LSMS_1 to LSMS_3

- LSMS_1 assumes one atom / MPI rank
 - But: This might not be ideal with current and future multicore CPU
 - Highly impractical for accelerators (CPUs)
- Increase flexibility of the code to adapt to new architectures and new physics
- Reduce the amount of code that needs to be rewritten
 - (This is essentially a one person effort)
- LSMS_1:

 Fortran (mainly 77) for LSMS
 C++ for Wang-Landau

LSMS_3

- Multiple atoms / MPI rank
 - possibility for multithreading (OpenMP) in LSMS
 - enable efficient use of accelerators
- New (less rigid) input file format
- Retain Wang-Landau part form LSMS_1
- LSMS_3:

Top level routines and data structures: C++

New communication routines: C++

Many compute routines from LSMS_1: Fortran

```
LSMSSystemParameters lsms;
  LSMSCommunication comm;
 CrystalParameters crystal;
  LocalTypeInfo local;
// Initialize communication and accelerator
// Read the input file
  communicateParameters(comm, lsms, crystal);
  local.setNumLocal(distributeTypes(crystal,comm));
  local.setGlobalId(comm.rank,crystal);
  buildLIZandCommLists(comm, lsms, crystal, local);
  loadPotentials(comm, lsms, crystal, local);
  setupVorpol(lsms,crystal,local,sphericalHarmonicsCoeficients);
  calculateCoreStates(comm,lsms,local);
  energyContourIntegration(comm, lsms, local);
  calculateChemPot(comm, lsms, local, eband);
```

Multiple Atoms / MPI rank

An important step to enable efficient use of multicore and accelerator architectures: Allow for more work / MPI rank!

In LSMS: multiple atoms / MPI rank necessitates new communication pattern


```
for all atoms i in the crystal do
  build the local interaction zone LIZ_i
  \{j|dist(\mathbf{x}_i,\mathbf{x}_j) < r_{\text{LIZ}}\}\ \text{of atom }i
  for all atoms j in LIZ<sub>i</sub> do
     add atom j to the list R_i of data to receive for
     atom i (tmatFrom)
     add atom i to the list S_i of data to send from
     atom j (tmatTo)
  end for
end for
remove duplicate entries from S_i and R_i
```


Multiple Atoms / MPI rank

Matrix<Complex> tmatStore;

t matrices needed for building the local tau matrices

Building the tau matrices:

- (1) Prepost receives for remote t matrices
- (2) Loop over all local atom (OpenMP) calculate local t matrices
- (3) Send local t matrices
- (4) wait for completion of communication

```
expectTmatCommunication(comm,local);
for(int i=0; i<local.atom.size(); i++)
   calculateSingleScattererSolution(lsms,local.atom[i],vr[i],energy,prel,pnrel, solution[i]);
sendTmats(comm,local);
finalizeTmatCommunication(comm);</pre>
```


Calculating the tau matrix $\tau = [I - tG_0]^{-1} t$

- (1) For all local atoms (possibility for multithreading)
 - (a) build m matrix (m=I-tG) (multithreading or accelerator)
 - (b) invert m matrix (multithreading or accelerator)
 - (c)

$$\tau = \left[I - tG_0\right]^{-1} t$$

m has rank k * #LIZ and can be broken in k * k blocks m_{ij}

$$m_{ij} = I\delta_{ij} - t_i G_0^{ij}$$

in most cases only the diagonal block for the local site is needed

$$\tau_{00} = (m^{-1})_{00} t_0$$

Block Inverse

The LSMS method requires only the first diagonal block of the inverse matrix

Recursively apply

$$\left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right)^{-1} = \left(\begin{array}{c|c} (A - BD^{-1}C)^{-1} & * \\ \hline * & * \end{array}\right)$$

The block size is a performance tuning parameter:

- Smaller block size: less work
- Larger block size: higher performance of matrix-matrix multiply

Performance of LSMS dominated by double complex matrix matrix multiplication

ZGEMM

Main zblock_lu loop BLAS: CPU, LAPACK: CPU

```
n=blk_sz(nblk)
      joff=na-n
      do iblk=nblk,2,-1
      m=n
      ioff=joff
      n=blk_sz(iblk-1)
      joff=joff-n
c invert the diagonal blk_sz(iblk) x blk_sz(iblk) block
      call zgetrf(m,m,a(ioff+1,ioff+1),lda,ipvt,info)
c calculate the inverse of above multiplying the row block
c blk_sz(iblk) x ioff
      call zgetrs('n',m,ioff,a(ioff+1,ioff+1),lda,ipvt,
           a(ioff+1,1),lda,info)
      if(iblk.gt.2) then
      call zgemm('n','n',n,ioff-k+1,na-ioff,cmone,a(joff+1,ioff+1),lda,
    &
          a(ioff+1,k),lda,cone,a(joff+1,k),lda)
      call zgemm('n','n',joff,n,na-ioff,cmone,a(1,ioff+1),lda,
           a(ioff+1, joff+1), lda, cone, a(1, joff+1), lda)
      endif
      enddo
      call zgemm('n', 'n', blk_sz(1), blk_sz(1)-k+1, na-blk_sz(1), cmone,
           a(1,blk_sz(1)+1),lda,a(blk_sz(1)+1,k),lda,cone,a,lda)
    &
```


Main zblock_lu loop **BLAS: CPU** LAPACK: CPU

```
do iblk=nblk,2,-1
• • •
call zgetrf(...)
call zgetrs(...)
call zgemm(...)
call zgemm(...)
enddo
call zgemm(...)
```


Main zblock_lu loop – GGD BLAS: GPU (CUDA) LAPACK: GPU (CULA device API)

```
call cublas_set_matrix(...)
do iblk=nblk,2,-1
call cula_device_zgetrf(...)
call cula_device_zgetrs(...)
call cublas_zgemm(...)
call cublas_zgemm(...)
enddo
call cublas_zgemm(...)
call cublas_get_matrix(...)
```


WL-LSMS3

- First Principles Statistical Mechanics of Magnetic Materials
- identified kernel for initial GPU work
 - zblock_lu (95% of wall time on CPU)
 - kernel performance: determined by BLAS and LAPACK: ZGEMM, ZGETRS, ZGETRF
- preliminary performance of zblock_lu for 12 atoms/node of Jaguarpf or 12 atoms/GPU
 - For Fermi C2050, times include host-GPU PCIe transfers
 - Currently GPU node does not utilize AMD Magny Cours host for compute

	Jaguarpf node (12 cores AMD Istanbul)		
Time (sec)	13.5	11.6	6.4

